TANGĖNCIES I ENLLAÇOS

TANGÈNCIES

Les tangències són traçats geomètrics presents Wennombrosos dissenys, estructures arquitectòniques i una infinitat de formes decoratives i objectes d'ús comú.

Recordem que dues línies es diu que són tangents quan tenen un sol punt comú sense que es tallin. Per resoldre qualsevol problema de tangències de rectes amb circumferències i d'aquestes entre si, és necessari aplicar amb molt de rigor les propietats i consideracions geomètriques que s'indiquen a continuació.

PROPIETATS

«Si una recta és tangent a una circumferència, el radt en el punt de tangència és perpendicular
a la rectas.
«Si dues circumferencies són tangents (siguin exteriors o interiors), el punt de contacte es troba en la recta que uneix els centress.

En circumferències tangents exteriors: $\mathrm{O}_{1} \mathrm{O}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$

En circumferències tangents interiors:

$$
{\overline{\mathrm{O}_{1} \mathrm{O}_{2}}=\mathrm{r}_{1}-\mathrm{r}_{2}}^{2}
$$

CONSIDERACIONS GEOMETRIOUES

- El centre de qualsevol circumferència que passi per dos punts $\boldsymbol{A} i \boldsymbol{B}$ es troba en la mediatriu del segment que els uneix.
(8) ${ }^{2}$ El centre de qualsevol circumferència tangent a dues rectes es troba en la bisectriu de l'angle que formens.

RECTES TANGENTS A UNA CIRCUMFERENCIA

PER UN PUNT T DE LA CIRCUMFERÈNCIA

1 r.

DADES

- Circumferencia de centre O .
- Punt T de la circumferencia.

Es traça el radi OT, alineant l'escaire tal com indica la figura.

3 r.

Girant l'escaire tracem, per T, la recta tangent solució.

PARAL•LELES A UNA DIRECCIÓ d DETERMINADA

1 r .

DADES

- Circumferencia de centre O.
- Direcció: d.

Pel centre O tracem la perpendicular a la direcció d , i obtenim els punts de tangència T_{1} i T_{2}.

Pels punts T_{1} i T_{2} tracem paralleles a la direcció d, i obtenim les rectes tangents $\mathrm{t}_{1} \mathrm{i} \mathbf{t}_{2}$.

DES D'UN PUNT P EXTERIOR A LA CIRCUMFERENCIA

RECTES TANGENTS A DUES CIRCUMFERENCIES

TANGENTS EXTERIORS

DADES

- Circumferències de centre O_{1} i O_{2} amb radis \mathbf{r}_{1} i \mathbf{r}_{2}, respectivament

2n.

Amb centre en la circumferencia de radi més gran $\left(\mathrm{O}_{2}\right)$, es dibuixa la circumferència que té per radi la diferència de les donades.

Des del centre de la circumferencia de radi més petit $\left(\mathrm{O}_{1}\right)$ es tracen les tangents a la circumferència diferència de radis ($\mathbf{r}_{2}-\mathbf{r}_{1}$), i s'obtenen els punts 1 i 2 .
La prolongació dels radis $\overline{\mathrm{O}_{2} 1} \mathrm{i} \overline{\mathrm{O}_{2} 2}$ defineix els punts de tangencia T_{1} i T_{2}.

Les rectes \mathbf{t}_{1} i \mathbf{t}_{2}, tangents solucio, contacten a T_{1} i T_{2} i són paral-leles a les tangents obtingudes abans. D'altra banda, els punts de contacte $T_{3} i_{4} T_{4}$ són els peus de les perpendiculars traçades per O_{1} a les tangents solució.

TANGENTS INTERIORS
1 r .

DADES

- Circumferencies de centre O_{1} i O_{2} amb radis \mathbf{r}_{1} i \mathbf{r}_{2}, respectivament.

Amb centre en la circumferència de radi més gran $\left(\mathrm{O}_{2}\right)$, es dibuixa la circumferència que té per radi la suma de les donades.

Des del centre de la circumferència de radi més petit $\left(\mathrm{O}_{1}\right)$ es tracen les tangents a la circumferència suma de radis $\left(r_{1}+r_{2}\right)$, i s'obtenen els punts 1 i 2. El traçat dels radis $\mathrm{O}_{2} 1 \mathrm{i} \overline{\mathrm{O}}_{2} 2$ determina els punts de tangència $\mathrm{T}_{1} \mathrm{i} \mathrm{T}_{2}$.

Les rectes \mathbf{t}_{1} i \mathbf{t}_{2}, tangents soluctó, contacten a T_{1} i T_{2} i són paral-leles a les tangents obtingudes abans. D'altra banda, els punts de contacte $\mathrm{T}_{3} \mathrm{i}_{4} \mathrm{~T}_{4}$ són els peus de les perpendiculars traçades per O_{1} a les tangents solucio.

TANGENCIES EN EL DISSENY

En el món del disseny sovint es presenta la necessitat d'unir o enllaçar dues línies.

Les aplicacions que s'exposen tot seguit són exemples de resolució de problemes de tangencies.

L'estil anomenat art déco, nascut a la Fira Mundial de París el 1925 , respon al concepte que «la forma sempre ha d'estar determinada per la funcio". Aquest estil encara té una gran influència sobre el disseny modern.
 TECNIQUES

Is ovals i els ovoides pertanyen al grup dels enllaços anomenats tancats perquè comencen i s'acaben en un mateix punt. També reben el nom de corbes circulars a causa del fet d'estar formades per circumferències tangents entre si.

OVAL

Corba tancada, plana i convexa, amb dos eixos de simetria perpendiculars, formada per quatre arcs de circumferència tangents entre si, els centres dels quals es troben en els eixos de simetria.

OVOIDE

Corba tancada, plana i convexa, formada per quatre ares de circumferència tangents entre si, depenent d'un sol eix de simetria.

Es tracta d'una corba molt semblant al contorn d'un ou, de la qual cosa es deriva la seva denominació.

Les espirals són corbes obertes i planes, generades pel moviment d'un punt que es desplaça gradualment al voltant d'un altre de fix, allunyant-se d'ell en cada volta. La distància radial que hi ha entre dues voltes o espires consecutives s'anomena pas de l'espiral.

Dins les espirals trobem les anomenades espirals de nucli poligonal o volutes, com la que es desenvolupa a la dreta, el nucli de la qual és un triangle equilàter.

CONSTRUCCIÓ D'UN OVAL. Coneixent-ne l'eix major (oval de tres centres)

1 r .

DADA: Eix major $\overline{\mathbf{A B}}$.
Es divideix el segment $\overline{\mathrm{AB}}$ en tres parts iguals i s'obtenen els punts O_{1} i O_{2}.

Amb centres a O_{1} i O_{2} es tracen les circumferencies de radis iguals a $\overline{\mathrm{AB}} / 3$. Els punts O_{3} i O_{4} determinen els centres dels altres dos ares de l'oval.

Amb centre a $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}$ es tracen els quatre arcs de circumferencia que enllacen en els punts $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ i T_{4} per definir l'oval.

CONSTRUCCIÓ D'UN OVOIDE. Coneixent-ne l'eix menor

1 r.

DADA: Eix menor $\overline{\mathbf{C D}}$.
Tracem la mediatriu del segment $\overline{\mathrm{CD}}$ i s'obté el punt mitjà O_{1}, centre de la circumferència de radi $\overline{\mathrm{CD}} / 2$.

2 n .

El punt O_{2} és el centre de l'arc menor de la corba. La seva unió amb \mathbf{C} i \mathbf{D} determina els punts d'enllaç $\mathrm{T}_{1} \mathrm{i}$ T T_{2}.

Amb centre a C i D tracem els arcs majors, que, a més, es corresponen amb els punts d'enllaç $\mathrm{T}_{3} \mathrm{i} \mathrm{T}_{4}$.

ESPIRAL

Les espirals són corbes obertes i planes, generades pel moviment d'un punt que es desplaça gradualment al voltant d'un altre de fix, allunyant-se d'ell en cada volta. La distància radial que hi ha entre dues voltes o espires consecutives s'anomena pas de l'espiral.
Dins les espirals trobem les anomenades espirals de nucli poligonal o volutes, com la que es desenvolupa a la dreta, el nucli de la qual és un triangle equilàter:

1 r.

DADA: Nucli triangular ABC. Es prenen com a centres dels arcs d'enllaç els vèrtexs del poligon.

2 n.

Els radis dels arcs s'obtenen allargant ordenadament els costats del poligon i sumant el següent amb l'anterior fins a completar una volta, i aixi successivament.

NOM i COGNOMS:

CURS:
DATA: / /

RECTES TANGENTS A UNA CIRCUMFERÈNCIA

1 TRAÇA LA RECTA TANGENT A LA CIRCUMFERĖNCIA PEL PUNT P

2 TRAÇA LES RECTES TANENGTS I PARAL•LELES A LA DIRECCIÓ DONADA

NOM i COGNOMS:
CURS:
DATA: / /

RECTES TANGENTS A UNA CIRCUMFERĖNCIA

3 TRAÇA LES RECTES TANGENTS A LA CIRCUMFERĖNCIA DES DEL PUNT P EXTERIOR

4 TRAÇA UNA CIRCUMFERĖNCIA QUE PASSI PEL PUNT P I SIGUI TANGENT A LA RECTA r

5 CIRCUMFERĖNCIA DE RADI $=2 \mathrm{~cm}$ TANGENT A DUES RECTES CONVERGENTS \mathbf{r}, \mathbf{s}

6 TRAÇA UNA CIRCUMFERĖNCIA DE RADI $\mathbf{r}=\mathbf{3} \mathbf{~ c m}$ TANGENT EXTERIOR A UNA ALTRA DONADA EN UN PUNT P

7 TRAÇA LES RECTES TANGENTS EXTERIORS A LES CIRCUMFERĖNCIES DONADES

8 TRAÇA LES RECTES TANGENTS INTERIORS A LESCIRCUMFERĖNCIES DONADES

NOM i COGNOMS:
CURS:
DATA: / /

Enllaços en corbes tècniques

9 DONAD L'EIX MAJOR AB CONSTRUEIX UN OVAL

A B

NOM i COGNOMS:
CURS:
DATA: / /

Enllaços en corbes tècniques

10 CONSTRUEIX UN OVOIDE CONEIXENT L'EIX MENOR

NOM i COGNOMS:
CURS:
DATA: / /

Enllaços en corbes tècniques

11 CONSTRUEIX UNA ESPIRAL DONAT EL NUCLI

A B

NOM i COGNOMS:
CURS:
DATA: / /

12

| TEMA | TITOL | EXERCICI | |
| :--- | :--- | :--- | :--- | :--- |
| COGNOMS I NOM | DATA | NOTA | |

